A density functional theory study of high-performance pre-lithiated MS2 (M = Mo, W, V) Monolayers as the Anode Material of Lithium Ion Batteries

Author:

Liu Tingfeng,Jin Zhong,Liu Dong-Xin,Du Chunmiao,Wang Lu,Lin HaipingORCID,Li YouyongORCID

Abstract

AbstractRecent experimental study shows that the pre-lithiated MoS2 monolayer exhibits an enhanced electrochemical performance, coulombic efficiency of which is 26% higher than the pristine MoS2 based anode. The underlying mechanism of such significant enhancement, however, has not yet been addressed. By means of density functional theory (DFT) calculations, we systematically investigated the adsorption and diffusion behavior of lithium (Li) atoms on the MS2 (M = Mo, W, V) monolayers. On the pre-lithiated MS2 monolayers, the adsorption energy of extra Li ions are not significantly changed, implying the feasibility of multilayer adsorption. Of importance, the Li diffusion barriers on pre-lithiated MS2 are negligibly small because of the charge accumulation between the diffusing Li ions and the pre-lithiating Li layer. Correspondingly, we report that the pre-lithiation should be a general treatment which can be employed on many transition-metal di-chalcogenides to improve their storage capacities and charge-discharge performance in Li ion batteries. In addition, we propose that the pre-lithiated VS2 may serve as an outstanding anode material in LIBs.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3