Abstract
AbstractClimate warming is expected to significantly affect plant–herbivore interactions. Even though direct effects of temperature on herbivores were extensively studied, indirect effects of temperature (acting via changes in host plant quality) on herbivore performance have rarely been addressed. We conducted multiple-choice feeding experiments with generalist herbivore Schistocerca gregaria feeding on six species of genus Impatiens cultivated at three different temperatures in growth chambers and a common garden. We also studied changes in leaf morphology and chemistry. We tested effects of temperature on plant palatability and assessed whether the effects could be explained by changes in the leaf traits. The leaves of most Impatiens species experienced the highest herbivory when cultivated at the warmest temperature. Traits related to leaf morphology (specific leaf area, leaf dry matter content and leaf area), but not to leaf chemistry, partly mediated the effects of temperature on plant palatability. Herbivores preferred smaller leaves with lower specific leaf area and higher leaf dry matter content. Our study suggests that elevated temperature will lead to changes in leaf traits and increase their palatability. This might further enhance the levels of herbivory under the increased herbivore pressure, which is forecasted as a consequence of climate warming.
Funder
Grantová Agentura České Republiky
Akademie Věd České Republiky
Ministerstvo školství, Mládeže A Tělovýchovy
Publisher
Springer Science and Business Media LLC
Reference84 articles.
1. Ali, J. G. & Agrawal, A. A. Specialist versus generalist insect herbivores and plant defense. Trends Plant Sci. 17, 293–302 (2012).
2. Maron, J. L. & Crone, E. Herbivory: Effects on plant abundance, distribution and population growth. Proc. R. Soc. B Biol. Sci. 273, 2575–2584 (2006).
3. Pachauri, R. K. et al. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (IPCC, 2014).
4. Robinet, C. & Roques, A. Direct impacts of recent climate warming on insect populations. Integr. Zool. 5, 132–142 (2010).
5. Lemoine, N. P., Drews, W. A., Burkepile, D. E. & Parker, J. D. Increased temperature alters feeding behavior of a generalist herbivore. Oikos 122, 1669–1678 (2013).
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献