Platform for the interdisciplinary study of cardiovascular, metabolic and neurovascular diseases (PICMAN) protocol

Author:

Dalakoti Mayank,Leow Melvin Khee Shing,Khoo Chin Meng,Yang Hayang,Ling Lieng Hsi,Muthiah Mark,Tan Eunice,Lee Jonathan,Dan Yock Young,Chew Nicholas,Seow Wei Qiang,Soong Poh Loong,Gan Louis,Gurung Rijan,Ackers-Johnson Matthew,Hou Han Wei,Sachaphibulkij Karishma,MacAry Paul,Low Gwen,Ang Christy,Yeo Tee Joo,Djohan Andie Hartanto,Li Tony,Yeung Wesley,Soh Rodney,Sia Ching Hui,Panday Vinay,Loong Shaun S. E.,Tan Benjamin Y. Q.,Yeo Leonard L. L.,Teo Lynette,Chow Pierce,Foo Roger

Abstract

AbstractThrough extensive multisystem phenotyping, the central aim of Project PICMAN is to correlate metabolic flexibility to measures of cardiometabolic health, including myocardial diastolic dysfunction, coronary and cerebral atherosclerosis, body fat distribution and severity of non-alcoholic fatty liver disease. This cohort will form the basis of larger interventional trials targeting metabolic inflexibility in the prevention of cardiovascular disease. Participants aged 21–72 years with no prior manifest atherosclerotic cardiovascular disease (ASCVD) are being recruited from a preventive cardiology clinic and an existing cohort of non-alcoholic fatty liver disease (NAFLD) in an academic medical centre. A total of 120 patients will be recruited in the pilot phase of this study and followed up for 5 years. Those with 10-year ASCVD risk ≥ 5% as per the QRISK3 calculator are eligible. Those with established diabetes mellitus are excluded. Participants recruited undergo a detailed assessment of health behaviours and physical measurements. Participants also undergo a series of multimodality clinical phenotyping comprising cardiac tests, vascular assessments, metabolic tests, liver and neurovascular testing. Blood samples are also being collected and banked for plasma biomarkers, ‘multi-omics analyses’ and for generation of induced pluripotent stem cells (iPSC). Extensive evidence points to metabolic dysregulation as an early precursor of cardiovascular disease, particularly in Asia. We hypothesise that quantifiable metabolic inflexibility may be representative of an individual in his/her silent, but high-risk progression towards insulin resistance, diabetes and cardiovascular disease. The platform for interdisciplinary cardiovascular-metabolic-neurovascular diseases (PICMAN) is a pilot, prospective, multi-ethnic cohort study.

Funder

National University Health System

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3