Real-time acoustic sensing and artificial intelligence for error prevention in orthopedic surgery

Author:

Seibold Matthias,Maurer Steven,Hoch Armando,Zingg Patrick,Farshad Mazda,Navab Nassir,Fürnstahl Philipp

Abstract

AbstractIn this work, we developed and validated a computer method capable of robustly detecting drill breakthrough events and show the potential of deep learning-based acoustic sensing for surgical error prevention. Bone drilling is an essential part of orthopedic surgery and has a high risk of injuring vital structures when over-drilling into adjacent soft tissue. We acquired a dataset consisting of structure-borne audio recordings of drill breakthrough sequences with custom piezo contact microphones in an experimental setup using six human cadaveric hip specimens. In the following step, we developed a deep learning-based method for the automated detection of drill breakthrough events in a fast and accurate fashion. We evaluated the proposed network regarding breakthrough detection sensitivity and latency. The best performing variant yields a sensitivity of $$93.64 \pm 2.42$$ 93.64 ± 2.42 % for drill breakthrough detection in a total execution time of 139.29$${\hbox { ms}}$$ ms . The validation and performance evaluation of our solution demonstrates promising results for surgical error prevention by automated acoustic-based drill breakthrough detection in a realistic experiment while being multiple times faster than a surgeon’s reaction time. Furthermore, our proposed method represents an important step for the translation of acoustic-based breakthrough detection towards surgical use.

Funder

Projekt DEAL

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3