Author:
Magar Rishikesh,Yadav Prakarsh,Barati Farimani Amir
Abstract
AbstractThe fast and untraceable virus mutations take lives of thousands of people before the immune system can produce the inhibitory antibody. The recent outbreak of COVID-19 infected and killed thousands of people in the world. Rapid methods in finding peptides or antibody sequences that can inhibit the viral epitopes of SARS-CoV-2 will save the life of thousands. To predict neutralizing antibodies for SARS-CoV-2 in a high-throughput manner, in this paper, we use different machine learning (ML) model to predict the possible inhibitory synthetic antibodies for SARS-CoV-2. We collected 1933 virus-antibody sequences and their clinical patient neutralization response and trained an ML model to predict the antibody response. Using graph featurization with variety of ML methods, like XGBoost, Random Forest, Multilayered Perceptron, Support Vector Machine and Logistic Regression, we screened thousands of hypothetical antibody sequences and found nine stable antibodies that potentially inhibit SARS-CoV-2. We combined bioinformatics, structural biology, and Molecular Dynamics (MD) simulations to verify the stability of the candidate antibodies that can inhibit SARS-CoV-2.
Funder
Center of Machine Learning in Health
Publisher
Springer Science and Business Media LLC
Cited by
66 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献