Green electrochemical method for the synthesis of nitro and azo derivatives based on mefenamic acid

Author:

Amooshahi Parvaneh,Khazalpour SadeghORCID,Amani Ameneh,Masoumi Hossein

Abstract

AbstractElectrochemical study of mefenamic acid (MFA) was carried out with details in water/ethanol mixture by the various voltammetric techniques. The results showed that the oxidation of MFA is highly dependent on pH and follows the Eir mechanism. The EpA1-pH diagram plotted based on the differential pulse voltammograms shows two linear segments, 66 and 26 mV/pH slope. Also, the diffusion coefficient and the surface excess, Ӷ* of MFA in aqueous buffered solution, determined by using the single potential-step chronoamperometry and chronocoulometry methods. Electrochemical nitration of MFA in an aqueous solution and the presence of nitrite ion (1) were both investigated by the cyclic voltammetry and controlled-potential coulometry techniques. Our results indicate that the oxidized form of MFA participates in a Michael-type addition reaction with nitrite ion (1) to form the corresponding Nitromefenamic acids (MFA-4-NO2 and MFA-5-NO2). Also, in another part, a computational study based on the density functional theory (DFT/B3LYP) was performed for the prediction of the best possible pathway in the nucleophilic addition of nitrite ion (1). The electrochemical reduction of produced nitromefenamic acids was investigated using cyclic voltammetry and controlled-potential coulometry techniques. Eventually, two new azo derivatives have been generated via electroreduction of produced nitromefenamic acids and conduction of diazotization reaction, respectively. Both nitro and azo products are approved as paints.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3