Author:
Azmayesh Rasoul,Naghshara Hamid,Mohammadi Aref Sajedeh,Ghafouri Mohammad
Abstract
AbstractCompositions of ZnO nanoparticles and polyaniline, in the form of emeraldine salt, were manufactured as thin layers by using the spin-coating method. Then, the effect of polyaniline content on their photoelectrochemical characteristics was studied. Results indicate that all the samples are sensitive to light. Besides, with 0.30% of PANI, the composite sample demonstrates the highest photocurrent density; also, its photocurrent increment starts to increase at a voltage of ⁓ 1.23 V (vs. RHE), which is approximately in accordance with the theoretical potential of water electrolysis. Furthermore, since the rate of electron–hole recombination in this composite sample is the lowest, it possesses the highest photoelectrochemical efficiency. Main findings were analyzed with respect to UV–visible absorption and photoluminescence spectra as well as SEM micrographs of the samples and Raman spectral measurements. Besides, electrochemical impedance spectroscopy analysis was applied to both pure ZnO and the sample with the best response. Effects of drying temperature and layer thickness were also investigated.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献