A proof of concept study on reliability assessment of different metal foil length based piezoelectric sensor for electromechanical impedance techniques

Author:

Parida LukeshORCID,Moharana SumedhaORCID,Vicente RomeuORCID,Ascensão GuilhermeORCID

Abstract

AbstractLead zirconate titanate (PZT) patches gained popularity in structural health monitoring (SHM) for its sensing and cost effective. However, a robust installation of PZT patches is challenging due to the often-complex geometry and non-accessibility of structural parts. For tubular structures, the curved surface can compromise the perfect bonding of PZT patches. To alleviate the above-mentioned challenges, the non-bonded and reusable configuration of sensor received considerable interest in the field of SHM. However, ensuring the repeatability and reproducibility of Electro-Mechanical Impedance (EMI) measurements is crucial to establish the reliability of these techniques. This work investigated the repeatability and reproducibility measures for one of non-bonded configuration of PZT patch i.e., Metal Foil Based Piezo Sensor (MFBPS). In addition, the concept, application, and suitability of MFBPS for impedance-based monitoring technique of Civil infrastructure are critically discussed. This study evaluates the effect of length of MFBPS on piezo coupled admittance signature. Also, this study evaluates repeatability and reproducibility of EMI measurements via statistical tools such as ANOVA and Gage R&R analysis. The statistical index CCDM was used to quantify the deviations of impedance signals. The overall result shows that the repeatability of the EMI measurements improves with a metal foil length of 500 mm. Overall, this investigation offers a useful point of reference for professionals and scholars to ensure the reliability of MFBPS for EMI techniques, a variant of piezoelectric sensor for SHM applications.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3