Prediction of heavy metal biosorption mechanism through studying isotherm kinetic equations

Author:

Fadl Mostafa G.

Abstract

AbstractThe kinetic constants for free and immobilized cells were determined by measuring reaction rates at different metal concentrations at the optimum reaction conditions. (Kmax and Vmax) were calculated from the slope and intercept of the straight lines. The pseudo-second-order rate constants are derived based on the sorption capacity of the solid phase, where K2 is the rate constant for the pseudo-second-order model. Determined experimentally by plotting t/q against t. The mean free vitality of adsorption (E) was figured as 2.62 kJ mol−1 and the extent of E communicated gives data on the adsorption mechanism. An E value ranging from 1 to 8 indicates physisorption and 8–16 kJ mol−1 predicts ion exchange. Thus, the evaluated value of 2.62 kJ mol−1 predicts the phenomenon of physisorption, which suggests that metal ions were favorably adsorbed by this biosorbent in a multi-layer fashion. The overall result suggested that 98.2% of U (VI) by biosorption of U in the mechanism of adsorption will include chemisorption mechanistic pathway: Langmuir, Freundlich, equations and the values of Kf 5.791 where KL 3.9 were determined from the linear plot of log qe vs. log Ce at 30 °C, indicating that metal ions were favorably adsorbed by this biosorbent in a multi-layer fashion and instrumentation of beads characterizing novel Binding sites using FTIR & SEM beside change in peaks position which assigned for its groups confirm biosorption of metal.

Funder

Nuclear Materials Authority

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3