High gain quasi-omnidirectional dipole array fed by radial power divider for millimeter-wave IoT sensing

Author:

Sufian Md. Abu,Hussain Niamat,Choi Domin,Lee Sang-Min,Gil Sang-Keun,Kim Nam

Abstract

AbstractThis article presents the design and implementation of a dipole array antenna based on a radial waveguide power divider for millimeter-wave IoT sensing applications. The dipole array and radial waveguide power divider techniques are used in tandem to achieve high gain with omnidirectional radiation properties. The proposed antenna is comprised of eight non-uniform array dipole structures, a circular radiating loop, and shorting vias. The one-to-eight power divider is created with the shorting vias to feed the circularly arranged eight non-uniform dipole arrays simultaneously. The proposed antenna is simulated and manufactured on Rogers-RO3003C substrate with a thickness of 8 mils. Both simulated and tested results confirm that the proposed method enables the antenna to offer a quasi-omnidirectional pattern with a high peak gain of 5.42 dBi. The antenna offers an impedance bandwidth (S11 < ‒ 10 dB) of more than 1 GHz ranging from 27.93 to 29.13 GHz. Moreover, by optimizing the parameters of the power divider network the proposed antenna can be tuned between a wide bandwidth range of 14.53 GHz as the designed dipole array offering the operating bandwidth from 25.56 to 40.09 GHz. Due to its comprehensive set of performance attributes, particularly for the quasi-omnidirectional radiation characteristics, the presented antenna is a viable candidate for the 5G millimeter wave wireless IoT sensing applications. Additionally, this work will accommodate other researchers to explore the proposed method for developing high-gain omnidirectional antennas for millimeter-wave applications.

Funder

Institute for Information and Communications Technology Promotion

Ministry of Science and ICT, South Korea

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3