Author:
Gamage Jeewan,Voroney Paul,Gillespie Adam,Lo Andy,Longstaffe James
Abstract
AbstractThe presence of fused aromatic ring (FAR) structures in soil define the stability of the recalcitrant soil organic matter (RSOM). FAR are important skeletal features in RSOM that contribute to its extended residence time. During the early diagenesis, FAR structures are formed through condensation and polymerization of biomolecules produced during plant residue and microbial product decay. Molecular level characterization of the RSOM extracted from an organic soil profile gives important insights into the formation of FAR. Advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy, including recoupled long-range C–H dipolar dephasing experiments on extracted humic acids (HA) showed that they contain diagenetically formed FAR different from charcoal and lignin. Peaks characteristic of FAR are observed at all depths in the soil profile, with a greater prevalence observed in the HA extracts from the clay soil layer at the bottom. In the clay soil layer, 78% of the aromatic carbon was non-protonated, and this was 2.2-fold higher than the topsoil. These data further strengthen our understanding of the humification process that could occur in early diagenesis and help explain the importance of incorporating diagenesis as an important phenomenon for long-term carbon sequestration in soil.
Funder
Natural Sciences and Engineering Research Council (NSERC) Strategic and Discovery grants program
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献