Metaheuristic integrated machine learning classification of colon cancer using STFT LASSO and EHO feature extraction from microarray gene expressions

Author:

Nair Ajin R.,Rajaguru Harikumar,Karthika M. S.,Keerthivasan C.

Abstract

AbstractThe microarray gene expression data poses a tremendous challenge due to their curse of dimensionality problem. The sheer volume of features far surpasses available samples, leading to overfitting and reduced classification accuracy. Thus the dimensionality of microarray gene expression data must be reduced with efficient feature extraction methods to reduce the volume of data and extract meaningful information to enhance the classification accuracy and interpretability. In this research, we discover the uniqueness of applying STFT (Short Term Fourier Transform), LASSO (Least Absolute Shrinkage and Selection Operator), and EHO (Elephant Herding Optimisation) for extracting significant features from lung cancer and reducing the dimensionality of the microarray gene expression database. The classification of lung cancer is performed using the following classifiers: Gaussian Mixture Model (GMM), Particle Swarm Optimization (PSO) with GMM, Detrended Fluctuation Analysis (DFA), Naive Bayes classifier (NBC), Firefly with GMM, Support Vector Machine with Radial Basis Kernel (SVM-RBF) and Flower Pollination Optimization (FPO) with GMM. The EHO feature extraction with the FPO-GMM classifier attained the highest accuracy in the range of 96.77, with an F1 score of 97.5, MCC of 0.92 and Kappa of 0.92. The reported results underline the significance of utilizing STFT, LASSO, and EHO for feature extraction in reducing the dimensionality of microarray gene expression data. These methodologies also help in improved and early diagnosis of lung cancer with enhanced classification accuracy and interpretability.

Publisher

Springer Science and Business Media LLC

Reference44 articles.

1. Jemal, A., Siegel, R. & Xu, J. Cancer statistics, 2010. CA A Cancer J. Clin. 60(4), 276–300 (2010).

2. van’t Veer, L. J. & Bernards, R. Gene expression profiling for systemic disease. N. Engl. J. Med. 359(10), 1028–1039 (2008).

3. Barbara, K.-M. et al. Faecal occult blood point-of-care tests. J. Gastrointest. Cancer 49, 402–405 (2018).

4. Compton, C. C. Pathology report in colon cancer: What is prognostically important?. Dig. Dis. 17(2), 67–79 (1999).

5. Miller, D. J., Skucas, J. The Radiological Examination of the Colon: Practical Diagnosis, vol. 3. (Springer Science & Business Media, 2012).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3