Abstract
AbstractThis article presents the results of a study on resistance to motion in a multi-stage planetary transmission, built with lightweight structural materials such as aluminum alloy 2017, with bearing nodes featuring steel ball bearings made from X65Cr14 alloy and lubricated with molybdenum disulfide powder. Details of the planetary gear construction were presented, followed by operational performance tests. During the performance tests, the temperature of the running transmission was gradually lowered with liquid nitrogen to as low as − 190 °C. The analysis covered, among others, the power consumption of the mechanism as a function of temperature. The results were compared with the parameters of the mechanisms already working in space. The measurements were carried out to confirm the applicability of the gearing in drive systems of manipulators intended to operate in open space or under extraterrestrial conditions such as on Mars.
Publisher
Springer Science and Business Media LLC
Reference16 articles.
1. Arnaudov, K. & Karaivanov, D. P. Planetary Gear Trains (Taylor & Francis Ltd, 2019).
2. Brassitos, E. & Jalili, N. Design and development of a compact high-torque robotic actuator for space mechanisms. J. Mech. Robot. 9, 061002 (2017).
3. Kluger, J. Mars in earth’s image. In Discover Magazine (1992).
4. Williams, D. R. Mars Fact Sheet, National Space Science Data Center NASA (2016).
5. Pagani, R., Legnani, G., Incerti, G. & Gheza, M. Evaluation and modeling of the friction in robotic joints considering thermal effects. J. Mech. Robot. 12, 021108 (2020).