Author:
Shima Kohei,Cheng Tin S.,Mellor Christopher J.,Beton Peter H.,Elias Christine,Valvin Pierre,Gil Bernard,Cassabois Guillaume,Novikov Sergei V.,Chichibu Shigefusa F.
Abstract
AbstractCathodoluminescence (CL) spectroscopy is a suitable technique for studying the luminescent properties of optoelectronic materials because CL has no limitation on the excitable bandgap energy and eliminates ambiguous signals due to simple light scattering and resonant Raman scattering potentially involved in the photoluminescence spectra. However, direct CL measurements of atomically thin two-dimensional materials have been difficult due to the small excitation volume that interacts with high-energy electron beams. Herein, distinct CL signals from a monolayer hexagonal BN (hBN), namely mBN, epitaxial film grown on a graphite substrate are shown by using a CL system capable of large-area and surface-sensitive excitation. Spatially resolved CL spectra at 13 K exhibited a predominant 5.5-eV emission band, which has been ascribed to originate from multilayered aggregates of hBN, markedly at thicker areas formed on the step edges of the substrate. Conversely, a faint peak at 6.04 ± 0.01 eV was routinely observed from atomically flat areas, which is assigned as being due to the recombination of phonon-assisted direct excitons of mBN. The CL results support the transition from indirect bandgap in bulk hBN to direct bandgap in mBN. The results also encourage one to elucidate emission properties of other low-dimensional materials by using the present CL configuration.
Funder
Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan
The Engineering and Physical Sciences Research Council UK
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献