Abstract
AbstractThis paper considers a linear regression model with stochastic restrictions,we propose a new mixed Kibria–Lukman estimator by combining the mixed estimator and the Kibria–Lukman estimator.This new estimator is a general estimation, including OLS estimator, mixed estimator and Kibria–Lukman estimator as special cases. In addition, we discuss the advantages of the new estimator based on MSEM criterion, and illustrate the theoretical results through examples and simulation analysis.
Publisher
Springer Science and Business Media LLC
Reference29 articles.
1. Massy, W. F. Principal components regression in exploratory statistical research. J. Am. Stat. Assoc. 60, 234–256 (1965).
2. Hoerl, A. E. & Kennard, R. W. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12, 55–67 (1970).
3. Swindel, B. F. Good estimators based on prior information. Commun. Stat. Theroy Methods 5, 1065–1075 (1976).
4. Lukman, A. F., Ayinde, K., Binuomote, S. & Onate, A. C. Modified ridge-type estimator to cambat multicollinearity. J. Chemom. e3125, 1–12 (2019).
5. Liu, K. J. A new class of biased estimate in linear regression. Commun. Stat. Theroy Methods 22, 393–402 (1993).
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献