Protecting infrastructure performance from disinformation attacks

Author:

Jamalzadeh Saeed,Barker Kash,González Andrés D.,Radhakrishnan Sridhar

Abstract

AbstractDisinformation campaigns are prevalent, affecting vaccination coverage, creating uncertainty in election results, and causing supply chain disruptions, among others. Unfortunately, the problems of misinformation and disinformation are exacerbated due to the wide availability of online platforms and social networks. Naturally, these emerging disinformation networks could lead users to engage with critical infrastructure systems in harmful ways, leading to broader adverse impacts. One such example involves the spread of false pricing information, which causes drastic and sudden changes in user commodity consumption behavior, leading to shortages. Given this, it is critical to address the following related questions: (i) How can we monitor the evolution of disinformation dissemination and its projected impacts on commodity consumption? (ii) What effects do the mitigation efforts of human intermediaries have on the performance of the infrastructure network subject to disinformation campaigns? (iii) How can we manage infrastructure network operations and counter disinformation in concert to avoid shortages and satisfy user demands? To answer these questions, we develop a hybrid approach that integrates an epidemiological model of disinformation spread (based on a susceptible-infectious-recovered model, or SIR) with an efficient mixed-integer programming optimization model for infrastructure network performance. The goal of the optimization model is to determine the best protection and response actions against disinformation to minimize the general shortage of commodities at different nodes over time. The proposed model is illustrated with a case study involving a subset of the western US interconnection grid located in Los Angeles County in California.

Funder

National Institute of Standards and Technology

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3