Asymmetric Wigner molecules in nanowire Y-junctions

Author:

Méndez-Camacho R.,Cruz-Hernández E.

Abstract

AbstractThe possibility of crystalline states of interacting electrons, known as Wigner crystals, has been intensively studied in each of the three dimensions. One-dimensional (1D) systems, however, can be interconnected forming two-dimensional (2D) lattices, being a three-terminal Y-junction (Y-J) the simplest one. Then, even when electrons in the individual branches of the Y are confined in 1D, as the Y-J is in 2D, one could expect significant differences in the crystalline state of the electron gas in a Y-J. With the recent report of fabrication of defect-free GaAs/AlGaAs Y-Js by epitaxial methods, the study of semiconductor Y-Js acquires a special relevance due to its eventual direct exploration. Here, by considering the collective electron interactions using a Yukawa-like effective potential, we explore a two-electron distribution in nanowire Y-Js by modulating its electron density via a screening parameter. We find that the electrons changes from a quasi-continuous to a Wigner molecule-like distribution when the electron density decreases in the Y-J. In bold contrast to the strict 1D case, where equidistant distributions of equal density are obtained in the Wigner regime, in the Y-J equidistant distributions of asymmetric density are induced. We also explore the effect of an external electric field acting along the Y-axis on the asymmetric distributions.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Emergence of the Hexagonal Lattice in Two-Dimensional Wigner Fragments;The Journal of Physical Chemistry Letters;2024-03-25

2. Solution to the Thomson Problem for Clifford Tori with an Application to Wigner Crystals;Journal of Chemical Theory and Computation;2023-10-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3