Time-dependence of decontamination efficiency after a fallout of gamma-emitting radionuclides in suburban areas: a theoretical outlook on topsoil removal

Author:

Rääf Christopher L.,Isaksson Mats,Martinsson Johan,Finck Robert

Abstract

AbstractDecontamination of urban areas may be necessary in the case of extensive fallout of radioactive material after a nuclear accident, as removal of contaminated soil and vegetation will significantly reduce doses for the residents in an area affected by fallout. Experience from Japan shows that cleanup operations of urban areas may take years despite investment in ample resources. The time delay between the initial fallout and completion of the decontamination measures allows natural and physical processes to affect the results. The efficiency of the decontamination will therefore depend significantly on time. Radioecological modeling and computer simulation of urban topography with one-story houses were applied in this study to estimate action-influenced time-integrated dose reductions (TDR) of contaminated topsoil removal as a function of time after the fallout. Results indicate that the TDR decreases gradually after the fallout depending on the vertical migration rate of radiocesium and, to some extent, the initial 134Cs/137Cs ratio. Delaying the topsoil removal from 1 to 10 years will result in a TDR decrease by more than a factor of two. Removing the topsoil within one year after fallout results typically in an averted effective dose between 34 and 80 mSv per MBq m−2 deposition of 137Cs for residents in wooden houses. The corresponding values for residents in brick houses are about 50% lower due to higher shielding. Additional modeling is needed to estimate how age and sex influence the averted detriment to affected cohorts. In addition, more in-depth knowledge of how the efficiency of topsoil removal in practice compares with hypothetical models and the effect of incomplete removal of radiocesium is needed to improve calculations of TDR values.

Funder

Swedish Civil Contingencies Agency

Lund University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3