Sentinel optical and SAR data highlights multi-segment faulting during the 2018 Palu-Sulawesi earthquake (Mw 7.5)

Author:

Bacques Guillaume,de Michele Marcello,Foumelis Michael,Raucoules Daniel,Lemoine Anne,Briole Pierre

Abstract

AbstractThe main active tectonic structure in the western part of Central Sulawesi (Indonesia) is the left-lateral Palu-Koro strike-slip fault. Its offshore section was thought not to have broken during the Mw 7.5 Palu Earthquake on 28 September 2018, challenging the established knowledge of the tectonic setting at this location. Here, we use Sentinel-1 SAR interferometry to produce a map of the ground velocities in the area of the Mw 7.5 earthquake for the seven months following the 2018 earthquake. We show evidence of surface deformation along the western coast of the Palu bay, indicating that the Palu Koro offshore fault section might have contribute to or been affected by the earthquake. As the possibility of multi-segment ruptures is a high concern in the area because of the high seismic and tsunami hazard, we present here, a fault model that includes the offshore section of the Palu-Koro fault. Thanks to four independents space-based geodetics measurements of the co-seismic displacement (Sentinel-1 and Sentinel-2 correlograms) we constrain the 3D co-seismic ground displacements. The modeling of these displacements allows us to estimate the co-seismic fault slip amplitude and geometry at depth. At the end, we consider the multi-segment faulting scenario, including the offshore section of the Palu-Koro fault, as a plausible model to explain the submarine landslides and the tsunamis. This study also gives the opportunity to observe a super-shear earthquake in the context of a complex fault network and implies an increase in the probability of submarine landslides within the bay in the forthcoming years.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3