Author:
Yi Sangheon,Jun Chang-Pyo,Jo Kyoung-nam,Lee Hoil,Kim Min-Seok,Lee Sang Deuk,Cao Xianyong,Lim Jaesoo
Abstract
AbstractEast Asian summer monsoon (EASM)-driven rapid hydroclimatic variation is a crucial factor with major socioeconomic impacts. Nevertheless, decadal- to centennial-scale EASM variability over the last two millennia is still poorly understood. Pollen-based quantitative annual precipitation (PqPann) and annual precipitation reconstructed by artificial neural networks (ANNs) for the period 650–1940 CE were reconstructed from a paleo-reservoir in South Korea. ANNs reconstruction was performed to compensate for a hiatus section. On a decadal timescale, 10 high-precipitation periods were identified, and PqPann and ANNs reconstructions were comparable to local instrumental rainfall and historic drought records. Biotic lags to rapid climatic changes ranging from 25 to 100 years were recognized by asynchronous pollen and speleothem responses to precipitation. We suggest that PqPann-based decadal- to centennial-scale climatic change reconstruction should take biotic lags into account, although the lags can be ignored on the millennial scale. The position of the EASM rainband influenced rainfall magnitude.
Funder
Basic Research Project of the Korea Institute of Geoscience and Mineral Resources
Korean wetland sediments
Publisher
Springer Science and Business Media LLC
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献