Dual synergistic inhibition of COX and LOX by potential chemicals from Indian daily spices investigated through detailed computational studies

Author:

Rudrapal Mithun,Eltayeb Wafa Ali,Rakshit Gourav,El-Arabey Amr Ahmed,Khan Johra,Aldosari Sahar M.,Alshehri Bader,Abdalla Mohnad

Abstract

AbstractCyclooxygenase (COX) and Lipoxygenase (LOX) are essential enzymes for arachidonic acid (AA) to eicosanoids conversion. These AA-derived eicosanoids are essential for initiating immunological responses, causing inflammation, and resolving inflammation. Dual COX/5-LOX inhibitors are believed to be promising novel anti-inflammatory agents. They inhibit the synthesis of prostaglandins (PGs) and leukotrienes (LTs), but have no effect on lipoxin formation. This mechanism of combined inhibition circumvents certain limitations for selective COX-2 inhibitors and spares the gastrointestinal mucosa. Natural products, i.e. spice chemicals and herbs, offer an excellent opportunity for drug discovery. They have proven anti-inflammatory properties. However, the potential of a molecule to be a lead/ drug candidate can be much more enhanced if it has the property of inhibition in a dual mechanism. Synergistic activity is always a better option than the molecule's normal biological activity. Herein, we have explored the dual COX/5-LOX inhibition property of the three major potent phytoconsituents (curcumin, capsaicin, and gingerol) from Indian spices using in silico tools and biophysical techniques in a quest to identify their probable inhibitory role as anti-inflammatory agents. Results revealed the dual COX/5-LOX inhibitory potential of curcumin. Gingerol and capsaicin also revealed favorable results as dual COX/5-LOX inhibitors. Our results are substantiated by target similarity studies, molecular docking, molecular dynamics, energy calculations, DFT, and QSAR studies. In experimental inhibitory (in vitro) studies, curcumin exhibited the best dual inhibitory activities against COX-1/2 and 5-LOX enzymes. Capsaicin and gingerol also showed inhibitory potential against both COX and LOX enzymes. In view of the anti-inflammatory potential these spice chemicals, this research could pave the way for more scientific exploration in this area for drug discovery.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3