Open pollution routing problem of logistics distribution in medical union based on differential search algorithm

Author:

Quan Xiaoxiao,Pang Yongsheng,Chen Jiansheng,Chu Xianghua,Shangguan Lina

Abstract

AbstractMedical care is a guarantee of people's daily life. Improving healthcare contributes to people's well-being. However, healthcare resources are characterized by uneven distribution. Financially well-off areas will have higher quality health care resources. Most of the medical resources are concentrated in public general hospitals, however, primary care institutions can hardly meet the growing needs of people. To solve this problem, Medical Union achieves efficient deployment of resources by integrating various medical institutions in the same area. In the process of logistics integration of the medical union, the scale of logistics distribution expands accordingly. Transportation vehicles have high operating costs and produce greenhouse gases in the process of distribution. The optimization of the driving path of logistics distribution vehicles can reduce the operating cost, fuel consumption and carbon emission. To solve this kind of decentralized and complex vehicle routing problem, this paper proposes a pollution routing problem model considering electrical vehicle usage, customer's soft time window expectation, open path and carbon cost. A modified Differential Search Algorithm with the comprehensive learning strategy and dynamic Cauchy variation strategy is advanced to solve the problem. Results show that the improved algorithm has good solving performance, and verifies the rationality of the proposed model, which will help to reduce carbon emissions and save the logistics and operating costs of medical devices.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3