Structural design and dynamic characteristics analysis of braided composite two-stage gear transmission system

Author:

Zhang Weiliang

Abstract

AbstractIn order to realize the lightweight design of the transmission system, the braided composite material is applied to the two-stage gear transmission system. According to the structural characteristics of the two-stage gear reducer box, the whole box is designed to be assembled with the braided base and the box wall. Woven composite materials are applied to the web parts of mixed metal composite gears to realize the design goal of lightweight gears. Then, under the assumption of ignoring the influence of friction, bearings and other factors on the system, the dynamic model of the two-stage gear transmission system considering the box is established. By normalizing and dimensionless processing of the equations, the dimensionless differential equations of motion are obtained. The fourth-order Runge–Kutta method is used to analyze the relationship between the connection parameters and the dynamic characteristics of the system under the two working conditions of rigid and flexible connection between the composite base and the box wall.Through the analytical analysis of vibration displacement of two-stage gear reducer and box, the theoretical basis is found for the numerical analysis results. Finally, the dynamic characteristics of the transmission system are studied by vibration resonance analysis through high and low frequency interference. It is found that in a certain frequency range, with the decrease of the mass and moment of inertia of the transmission parts corresponding to the mixed metal composite gear, the amplitude-frequency characteristic Q of the lightweight gear and gearbox transmission system is slightly lower than that of the common gear and gearbox system, and the stability of the system is increased, and the dynamic characteristics of the system are improved.

Funder

Shaanxi Provincial Department of Education Service Local Special Plan Project

Key research and development projects in Shaanxi Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3