Periodic liquid crystalline waveguiding microstructures

Author:

Ertman Sławomir,Orzechowski Kamil,Rutkowska Katarzyna,Kołodyńska Oliwia,Różycka Julia,Ignaciuk Adam,Wasilewska Natalia,Osuch Tomasz,Woliński Tomasz R.

Abstract

AbstractDifferent methods allowing for creating optical waveguides with liquid–crystal (LC) cores, in which molecules form periodic patterns with precisely controlled periods, are reported. The first one is based on reversible photoalignment with high-resolution selective illumination and allows to control the period of LC molecules inside silica microcapillaries. The second method employs microstructures formed in PDMS, allowing to obtain both: LC-core waveguides and a set of specially designed periodic microelectrodes used for the periodic reorientation of molecules. Using both methods, we successfully controlled the period of the patterned alignment in the range from about 500 µm and scaled it down to as small as 20 µm. We performed experimental studies on waveguiding phenomenon in such structures, in view to obtain transmission spectra typical to optical fiber gratings. Since the results achieved in experimental conditions differed from those expected, the additional numerical simulations were performed to explain the observed effects. Finally, we obtained the waveguiding in a blue phase LC, characterized by naturally created three-dimensional periodicity with periods smaller than one micrometer. In such a structure, we were able to observe first-order bandgap, and moreover, we were able to tune it thermally in nearly the whole visible spectral range.

Funder

Politechnika Warszawska

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3