Spread of variants of epidemic disease based on the microscopic numerical simulations on networks

Author:

Okabe Yutaka,Shudo Akira

Abstract

AbstractViruses constantly undergo mutations with genomic changes. The propagation of variants of viruses is an interesting problem. We perform numerical simulations of the microscopic epidemic model based on network theory for the spread of variants. Assume that a small number of individuals infected with the variant are added to widespread infection with the original virus. When a highly infectious variant that is more transmissible than the original lineage is added, the variant spreads quickly to the wide space. On the other hand, if the infectivity is about the same as that of the original virus, the infection will not spread. The rate of spread is not linear as a function of the infection strength but increases non-linearly. This cannot be explained by the compartmental model of epidemiology but can be understood in terms of the dynamic absorbing state known from the contact process.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3