Author:
Nagasawa Ryosuke,Mas Erick,Moya Luis,Koshimura Shunichi
Abstract
AbstractEmergency responders require accurate and comprehensive data to make informed decisions. Moreover, the data should be acquired and analyzed swiftly to ensure an efficient response. One of the tasks at hand post-disaster is damage assessment within the impacted areas. In particular, building damage should be assessed to account for possible casualties, and displaced populations, to estimate long-term shelter capacities, and to assess the damage to services that depend on essential infrastructure (e.g. hospitals, schools, etc.). Remote sensing techniques, including satellite imagery, can be used to gathering such information so that the overall damage can be assessed. However, specific points of interest among the damaged buildings need higher resolution images and detailed information to assess the damage situation. These areas can be further assessed through unmanned aerial vehicles and 3D model reconstruction. This paper presents a multi-UAV coverage path planning method for the 3D reconstruction of postdisaster damaged buildings. The methodology has been implemented in NetLogo3D, a multi-agent model environment, and tested in a virtual built environment in Unity3D. The proposed method generates camera location points surrounding targeted damaged buildings. These camera location points are filtered to avoid collision and then sorted using the K-means or the Fuzzy C-means methods. After clustering camera location points and allocating these to each UAV unit, a route optimization process is conducted as a multiple traveling salesman problem. Final corrections are made to paths to avoid obstacles and give a resulting path for each UAV that balances the flight distance and time. The paper presents the details of the model and methodologies, and an examination of the texture resolution obtained from the proposed method and the conventional overhead flight with the nadir-looking method used in 3D mappings. The algorithm outperforms the conventional method in terms of the quality of the generated 3D model.
Funder
Core Research Cluster of Disaster Science
Tough Cyberphysical AI Research Center
Japan Society for the Promotion of Science
National Program for Scientific Research and Advanced Studies
Publisher
Springer Science and Business Media LLC
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献