Second order topology in a band engineered Chern insulator

Author:

Lahiri Srijata,Basu Saurabh

Abstract

AbstractHaldane model is a celebrated tight binding toy model of a Chern insulator in a 2D honeycomb lattice that exhibits quantized Hall conductance in the absence of an external magnetic field. In our work, we deform the bands of the Haldane model smoothly by varying one of its three nearest neighbour hopping amplitudes ($$t_1$$ t 1 ), while keeping the other two (t) fixed. This breaks the $$C_3$$ C 3 symmetry of the Hamiltonian, while the $$M_x*T$$ M x T symmetry is preserved. The symmetry breaking causes the Dirac cones to shift from the K and the K$$'$$ points in the Brillouin zone (BZ) to an intermediate M point. This is evident from the Berry curvature plots which show a similar shift in the corresponding values as a function of the deformation parameter, namely $$\frac{t_1}{t}$$ t 1 t . We observe two different topological phases of which, one is a topological insulator (TI) and the other is a second order topological insulator (SOTI). The Chern number (C) remains perfectly quantized at a value of $$C=1$$ C = 1 for the TI phase and it goes to zero in the SOTI phase. Furthermore, the evolution of the Wannier charge center (WCC) as the band is smoothly deformed shows a jump in the TI phase indicating the presence of conducting edge modes. We also study the SOTI phase and diagonalize the real space Hamiltonian on a rhombic supercell which shows the presence of in-gap zero energy corner modes. The polarization of the system, namely $$p_x$$ p x and $$p_y$$ p y , are evaluated, along the x and the y directions, respectively. We see that both $$p_x$$ p x and $$p_y$$ p y are quantized in the SOTI phase owing to the presence of the inversion symmetry of the system. Finally we establish the SOTI phase as an example of a topological phase with zero Berry curvature and provide an analogy with the two dimensional Su–Schrieffer–Heeger model.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3