GC–MS based metabolomic profiling of Aporosa cardiosperma (Gaertn.) Merr. leaf extracts and evaluating its therapeutic potential

Author:

Abdul Ubais,Manikandan Dinesh Babu,Arumugam Manikandan,Alomar Suliman Yousef,Manoharadas Salim,Ramasamy Thirumurugan

Abstract

AbstractAporosa cardiosperma is a plant species majorly found in the Indian Western Ghats that belongs to the phyllanthaceae family with ethnobotanical importance. Using a Fourier Transform-Infrared Spectrometer (FT-IR) and Gas Chromatography-Mass Spectrometry (GC–MS) for evaluating leaf extracts of A. cardiosperma, significant functional groups and metabolite constituents were determined, and its total flavonoid, phenol, and tannin content were quantified. Further, its antibacterial efficacy was investigated against microorganisms that cause fish and human disease and are resistant to common antibiotics, including Staphylococcus aureus, Bacillus subtilis, Mycobacterium tuberculosis, Klebsiella pneumoniae, Aeromonas hydrophila, and Pseudomonas aeruginosa. Regarding the outcomes of GC–MS analysis, the primary metabolites in the A. cardiosperma leaf extracts were heneicosane (57.06%), silane (13.60%), 1-heptadecene (10.09%), 3-hexadecene (9.99%), and pentadecane (9.54%). In comparison to other solvents, methanolic extract of A. cardiosperma leaves had increased phenolic, flavonoid, and tannin content; these findings are consistent with in vitro antioxidant potential and obtained that the methanolic extract (100 µg/mL) exhibited the higher percentage of inhibition in DPPH (82.35%), FRAP (86.20%), metal chelating (72.32%), and ABTS (86.06%) antioxidant assays respectively. Similar findings were found regarding the antibacterial efficacy against pathogenic bacteria. Comparatively, to other extracts, methanolic extracts showed more significant antibacterial activity at a lower minimum inhibitory concentration (MIC) value (250 µg/mL), whilst ethyl acetate and hexane solvent extracts of A. cardiosperma leaves had higher MIC values 500 µg/mL and 1000 µg/mL respectively. The antimicrobial potential was validated by investigating bacterial growth through the extracts acquired MICs and sub-MICs range. Bacterial growth was completely inhibited at the determined MIC range. In conclusion, A. cardiosperma leaf extract's phytochemical fingerprint has been determined, and its potent antibacterial and antioxidant activities were discovered. These findings of the current study will pave the way for developing herbal treatments from A. cardiosperma for various fish and human diseases.

Funder

Researchers Supporting Project, King Saud University, Riyadh, Saudi Arabia

Publisher

Springer Science and Business Media LLC

Reference60 articles.

1. Wei, L. et al. Data mining and analysis for emicizumab adverse event signals based on the Food and Drug Administration Adverse Event Reporting System database. Int. J. Clin. Pharm. 45, 622–629 (2023).

2. El Jemli, M. et al. Radical-scavenging activity and ferric reducing ability of Juniperus thurifera (L.), J. oxycedrus (L.), J. phoenicea (L.) and Tetraclinis articulata (L.). Adv. Pharmacol. Pharm. Sci. 2016, e6392656 (2016).

3. Ghatti, S. S. et al. A comprehensive review on Sophora japonica: Ethnomedicinal, phytochemistry & pharmacological aspects. Nat. Prod. J. 14, 1–18 (2024).

4. Kumara, K. K. S., Shishupala, S. & Prakash, H. S. The genus Phyllanthus: A rich source of pharmacologically active compounds useful in traditional and modern medicines. In Ethnic Knowledge and Perspectives of Medicinal Plants (Apple Academic Press, 2023).

5. Schot, A. M. Systematics of Aporosa (Euphorbiaceae). Blumea. Supplement 17, 1–380 (2004).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3