Computational fluid dynamics comparison of prevalent liquid absorbents for the separation of SO2 acidic pollutant inside a membrane contactor

Author:

Cao Yan,Taghvaie Nakhjiri Ali,Ghadiri Mahdi

Abstract

AbstractIn recent years, the emission of detrimental acidic pollutants to the atmosphere has raised the concerns of scientists. Sulphur dioxide (SO2) is a harmful greenhouse gas, which its abnormal release to the atmosphere may cause far-ranging environmental and health effects like acid rain and respiratory problems. Therefore, finding promising techniques to alleviate the emission of this greenhouse gas may be of great urgency towards environmental protection. This paper aims to evaluate the potential of three novel absorbents (seawater (H2O), dimethyl aniline (DMA) and sodium hydroxide (NaOH) to separate SO2 acidic pollutant from SO2/air gaseous stream inside the hollow fiber membrane contactor (HFMC). To reach this goal, a CFD-based simulation was developed to predict the results. Also, a mathematical model was applied to theoretically evaluate the transport equations in different compartments of contactor. Comparison of the results has implied seawater is the most efficient liquid absorbent for separating SO2. After seawater, NaOH and DMA are placed at the second and third rank (99.36% separation using seawater > 62% separation using NaOH > 55% separation using DMA). Additionally, the influence of operational parameters (i.e., gas and liquid flow rates) and also membrane/module parameters (i.e., length of membrane module, hollow fibers’ number and porosity) on the SO2 separation percentage is investigated as another highlight of this paper.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3