Automatic segmentation of inner ear on CT-scan using auto-context convolutional neural network

Author:

Hussain Raabid,Lalande Alain,Girum Kibrom Berihu,Guigou Caroline,Bozorg Grayeli Alexis

Abstract

AbstractTemporal bone CT-scan is a prerequisite in most surgical procedures concerning the ear such as cochlear implants. The 3D vision of inner ear structures is crucial for diagnostic and surgical preplanning purposes. Since clinical CT-scans are acquired at relatively low resolutions, improved performance can be achieved by registering patient-specific CT images to a high-resolution inner ear model built from accurate 3D segmentations based on micro-CT of human temporal bone specimens. This paper presents a framework based on convolutional neural network for human inner ear segmentation from micro-CT images which can be used to build such a model from an extensive database. The proposed approach employs an auto-context based cascaded 2D U-net architecture with 3D connected component refinement to segment the cochlear scalae, semicircular canals, and the vestibule. The system was formulated on a data set composed of 17 micro-CT from public Hear-EU dataset. A Dice coefficient of 0.90 and Hausdorff distance of 0.74 mm were obtained. The system yielded precise and fast automatic inner-ear segmentations.

Funder

Oticon Medical, France

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3