Author:
Teng Lin,Qin Qin,Zhou Ziyi,Zhou Fei,Cao Chunyu,Yang Jian,Ding Jiawang
Abstract
AbstractGlutamate, the major excitatory neurotransmitter in the central nervous system, has also been found to play a role in embryonic stem (ES) cells. However, the exact mechanism and function of glutamatergic signaling in ES cells remain poorly understood. In this study, we identified a glutamatergic transmission circuit in ES cells that operates through an autocrine mechanism and regulates cell proliferation. We performed biological analyses to identify the key components involved in glutamate biosynthesis, packaging for secretion, reaction, and reuptake in ES cells, including glutaminase, vesicular glutamate transporter, glutamate N-methyl-d-aspartate (NMDA) receptor, and cell membrane excitatory amino-acid transporter (EAAT). We directly quantified the released glutamate signal using microdialysis-high performance liquid chromatography-tandem mass spectrometry (MD–HPLC–MS–MS). Pharmacological inhibition of endogenous glutamate release and the resulting tonic activation of NMDA receptors significantly affected ES cell proliferation, suggesting that ES cells establish a glutamatergic autocrine niche via releasing and responding to the transmitter for their own regulation.
Funder
Yichang Science Foundation of China
Open Foundation of Hubei Province Key Laboratory of Tumor Microencironment and immunotherapy
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献