Implementation of a hybrid neural network control technique to a cascaded MLI based SAPF

Author:

Behera Rashmi Rekha,Dash Ashish Ranjan,Mishra Satyasis,Panda Anup Kumar,Gelmecha Demissie Jobir

Abstract

AbstractThis paper presents a naïve back propagation (NBP) based $$i\cos \emptyset$$ i cos technique implemented to a cascaded multilevel inverter (MLI) based shunt active power filter (SAPF). The recommended control algorithm is applied to extract the fundamental component of load current and to decide the compensating current reference for harmonic elimination. The performance of the SAPF using the proposed NBP-based $$i\cos \emptyset$$ i cos technique is compared with another two classical control techniques, such as, $$i_{d} - i_{q}$$ i d - i q technique and $$i\cos \emptyset$$ i cos technique. The accuracy of the proposed control technique depends on the tuned estimation of active and reactive weights. The performance study of the proposed SAPF with the proposed control technique is investigated under non-linear conditions, with balanced and unbalanced loading conditions. The results reveal that the recommended SAPF is efficient enough to reduce the harmonics from the source current with smooth variation in DC link voltage. The effectiveness of the proposed method is validated by simulation using MATLAB Simulink, and the real-time results are also validated by the experimental setup.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3