Quantitative characterization of non-DLVO factors in the aggregation of black soil colloids

Author:

Gao XiaodanORCID,Kou Qi,Ren Kailu,Zuo Yan,Xu YingdeORCID,Zhang Yun,Lal Rattan,Wang JingkuanORCID

Abstract

AbstractThe variable role and fate of soil colloids under different environmental conditions are derived from their dispersion and aggregation properties. In this work, dynamic and static light scattering were used to characterize the original size, aggregation kinetics of natural black soil colloids (BSCs) and structural features of aggregates in electrolytes with different cations (K+, Mg2+, Ca2+), respectively. For these three cations, the aggregation kinetics followed the trend of Ca2+ > Mg2+ > K+ and the critical coagulation concentration (CCC) followed the sequence: K+ (134.30 mmol L−1) > Mg2+ (13.27 mmol L−1) > Ca2+ (4.19 mmol L−1). The results indicated that the aggregation behavior in different valence cation systems followed the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) model qualitatively. However, the quantitative differences of CCC suggest the existence of ion-specific effects. The effective ionic charge coefficient 1.31, 2.20, and 2.78 of K+, Mg2+ and Ca2+ were proposed to consider of all the non-DLVO factors, which were obtained by forming a relationship based on mathematic between the electrostatic repulsion and the van der Waals attractive interaction at the CCC. The non-classical polarization of cations in a strong soil electric field is a primary mechanism of cation effects on soil colloid interactions, causing the difference in colloid interaction energy and further affecting soil colloid aggregation. This result is crucial for enriching the theory of charged colloidal interactions.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3