Deep convolutional generative adversarial network for generation of computed tomography images of discontinuously carbon fiber reinforced polymer microstructures

Author:

Blarr Juliane,Klinder Steffen,Liebig Wilfried V.,Inal Kaan,Kärger Luise,Weidenmann Kay A.

Abstract

AbstractComputed tomography images are of utmost importance when characterizing the heterogeneous and complex microstructure of discontinuously fiber reinforced polymers. However, the devices are expensive and the scans are time- and energy-intensive. Through recent advances in generative adversarial networks, the instantaneous generation of endless numbers of images that are representative of the input images and hold physical significance becomes possible. Hence, this work presents a deep convolutional generative adversarial network trained on approximately 30,000 input images from carbon fiber reinforced polyamide 6 computed tomography scans. The challenge lies in the low contrast between the two constituents caused by the close proximity of the density of polyamide 6 and carbon fibers as well as the small fiber diameter compared to the necessary resolution of the images. In addition, the stochastic, heterogeneous microstructure does not follow any logical or predictable rules exacerbating their generation. The quality of the images generated by the trained network of 256 pixel $$\times$$ × 256 pixel was investigated through the Fréchet inception distance and nearest neighbor considerations based on Euclidean distance and structural similarity index measure. Additional visual qualitative assessment ensured the realistic depiction of the complex mixed single fiber and fiber bundle structure alongside flow-related physically feasible positioning of the fibers in the polymer. The authors foresee additionally huge potential in creating three-dimensional representative volume elements typically used in composites homogenization.

Funder

Deutsche Forschungsgemeinschaft

Karlsruher Institut für Technologie (KIT)

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3