The role of long-term power-law memory in controlling large-scale dynamical networks

Author:

Reed Emily A.ORCID,Ramos GuilhermeORCID,Bogdan PaulORCID,Pequito SérgioORCID

Abstract

AbstractControlling large-scale dynamical networks is crucial to understand and, ultimately, craft the evolution of complex behavior. While broadly speaking we understand how to control Markov dynamical networks, where the current state is only a function of its previous state, we lack a general understanding of how to control dynamical networks whose current state depends on states in the distant past (i.e. long-term memory). Therefore, we require a different way to analyze and control the more prevalent long-term memory dynamical networks. Herein, we propose a new approach to control dynamical networks exhibiting long-term power-law memory dependencies. Our newly proposed method enables us to find the minimum number of driven nodes (i.e. the state vertices in the network that are connected to one and only one input) and their placement to control a long-term power-law memory dynamical network given a specific time-horizon, which we define as the ‘time-to-control’. Remarkably, we provide evidence that long-term power-law memory dynamical networks require considerably fewer driven nodes to steer the network’s state to a desired goal for any given time-to-control as compared with Markov dynamical networks. Finally, our method can be used as a tool to determine the existence of long-term memory dynamics in networks.

Funder

National Science Foundation GRFP

University of Southern California Annenberg Fellowship

USC WiSE Top-Off Fellowship

National Science Foundation

U.S. Army Research Office

DARPA Young Faculty Award and DARPA Director Award,

2021 USC Stevens Center Technology Advancement Grant (TAG) award

Intel faculty award

Northrop Grumman grant

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3