Several machine learning techniques comparison for the prediction of the uniaxial compressive strength of carbonate rocks

Author:

Hassan Mohamed YusufORCID,Arman HasanORCID

Abstract

AbstractIn engineering practices, it is critical and necessary to either measure or estimate the uniaxial compressive strength (UCS) of the rock. Measuring the UCS of rocks requires comprehensive studies in the field and in the laboratory for the rock block sampling, coring, and testing. These studies are time-consuming, expensive and go through difficult processes. Alternatively, the UCS can either be estimated by empirical relationships or predictive models with various measured mechanical and physical parameters of the rocks. Previous studies used different methods to predict UCS, including least squares regression techniques (MLR), adaptive neuro-fuzzy inference system (ANFIS), Sequential artificial neuron networks (SANN), etc. This study is intended to estimate the UCS of the carbonate rock by using a simple, measured Schmidt Hammer (SHVC) test on core sample and a unit weight (γn) of carbonate rock. Principal components regression (PCR), MLR, SANN, and ANFIS are employed to predict the UCS. We are not aware of any study compared the performances of these methods for the prediction of the UCS values. Based on the root mean square error, mean absolute error and R2, the Sequential artificial neural network has a slight advantage against the other three models.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3