Seismic response analysis of subway station under obliquely incident SV waves

Author:

Zhu Hui,Yan Songhong,Sun Weiyu,Zhang Rongling,Ou Erfeng,Liang Qingguo

Abstract

AbstractThis paper aims to investigate the dynamic response characteristics of subway station under earthquakes. To this end, seismic waves are transformed into equivalent nodal loads on viscoelastic artificial boundaries using theories and methods of wave motion. The calculation formulas for equivalent nodal loads of SV waves incident at any angle are established, and ANSYS' APDL program compiles to automatically generate the viscoelastic artificial boundary and input the seismic loads. A finite element model of soil-subway station interaction was established, and the seismic response characteristics of a two-story three-span subway station under different incidence angles of SV waves were investigated using the above seismic input method. The results indicate that the incidence angle of seismic waves has a significant impact on the seismic response of subway station. Inclined incidence of seismic waves causes non-uniform loading and deformation of the subway station. Specifically, a small angle leads to predominantly transverse shear deformation, while a large angle causes mainly vertical shear deformation. The inclined incidence of seismic waves significantly increases the vertical acceleration of the subway station, with the effect becoming more pronounced as the angle increases. Additionally, special attention should be given to the joints between the structural slab and the side wall, slab and center column, as well as the two ends of the center column as they are vulnerable areas during earthquakes and require careful consideration in seismic design.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Natural Science Foundation of Gansu Province

Lanzhou Jiaotong University Tianyou Young Talent Support Project

China National Railway Group Corporation Science and Technology Program Development Program

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3