Design optimization of large-scale bifacial photovoltaic module frame using deep learning surrogate model

Author:

Han Dongwoon,Kim Seongtak

Abstract

AbstractRecently, the wafers used in solar cells have been increasing in size, leading to larger module sizes and weights. The increased weight can cause deflection of photovoltaic (PV) module, which may lead to decreased cell efficiency. In this study, we developed a deep neural network (DNN)-based finite element (FE) surrogate model to obtain the optimal frame design factors that can improve deflection in large-scale bifacial PV module. Initially, an FE model was constructed for large-scale bifacial PV module. Based on this, the FE surrogate model was trained using 243 FEA datasets generated within the proposed range of factors. Furthermore, it was improved through Bayesian optimization and k-fold validation. As a result, the final loss value was $$3.743 \times 10^{-4}$$ 3.743 × 10 - 4 , and the average mean absolute percentage error (MAPE) and coefficient of determination ($$R^2$$ R 2 ) values for deflection and weight were 0.0017, 0.9972 for the training set, and 0.0020, 0.9962 for the test set, respectively. This indicates that the trained FE surrogate model possesses significant accuracy. After generating 1 million datasets within the range of frame design factors, the trained model was used to obtain predictions. Based on this data, the frame design factors that minimize both deflection and weight were identified as about a = 1.5, b = 13.7, c = 1.5, d = 3.0, e = 4.3. At this point, the deflection was 11.1 mm, and the weight was 3.6 kg. After altering the frame shape with the derived factors, FEA was conducted. The results matched for both deflection and weight, with almost no error. At this point, the weight increased by approximately 12.8% compared to the existing, while the deflection decreased by about 9.6%. Additionally, we analyzed the relationship between deflection and weight for each factor and secured the basis for the derived results. Consequently, our FE surrogate model accurately predicted the FEA results and quickly identified the optimal factors that minimize deflection and weight.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3