A multi modal approach to microstructure evolution and mechanical response of additive friction stir deposited AZ31B Mg alloy

Author:

Joshi Sameehan S.,Sharma Shashank,Radhakrishnan M.,Pantawane Mangesh V.,Patil Shreyash M.,Jin Yuqi,Yang Teng,Riley Daniel A.,Banerjee Rajarshi,Dahotre Narendra B.

Abstract

AbstractCurrent work explored solid-state additive manufacturing of AZ31B-Mg alloy using additive friction stir deposition. Samples with relative densities ≥ 99.4% were additively produced. Spatial and temporal evolution of temperature during additive friction stir deposition was predicted using multi-layer computational process model. Microstructural evolution in the additively fabricated samples was examined using electron back scatter diffraction and high-resolution transmission electron microscopy. Mechanical properties of the additive samples were evaluated by non-destructive effective bulk modulus elastography and destructive uni-axial tensile testing. Additively produced samples experienced evolution of predominantly basal texture on the top surface and a marginal increase in the grain size compared to feed stock. Transmission electron microscopy shed light on fine scale precipitation of Mg$$_{17}$$ 17 Al$$_{12}$$ 12 within feed stock and additive samples. The fraction of Mg$$_{17}$$ 17 Al$$_{12}$$ 12 reduced in the additively produced samples compared to feed stock. The bulk dynamic modulus of the additive samples was slightly lower than the feed stock. There was a $$\sim\,$$ 30 MPa reduction in 0.2% proof stress and a 10–30 MPa reduction in ultimate tensile strength for the additively produced samples compared to feed stock. The elongation of the additive samples was 4–10% lower than feed stock. Such a property response for additive friction stir deposited AZ31B-Mg alloy was realized through distinct thermokinetics driven multi-scale microstructure evolution.

Funder

State of Texas Appropriation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3