Influence of the pulse repetition rate on the acoustic output of ballistic pressure wave devices

Author:

Reinhardt Nina,Wegenaer Jens,de la Fuente Matías

Abstract

AbstractBallistic devices that generate radial pressure waves are used for the treatment of different therapeutic indications. In order to assess the effectiveness of these devices and to interpret and transfer the results of clinical trials, it is important to know their acoustic output. In this paper, two ballistic devices and their reproducibility at different clinically relevant settings were investigated in the same in-vitro test setup. Pressure curves were measured in water at different intensity levels and pulse repetition rates. The sound field parameters (peak pressures, positive pulse intensity integral) were calculated from the pressure curves. Additionally, the surface velocity of the applicator was determined in air using a vibrometer. Both devices show a good pulse-to-pulse reproducibility. While the peak maximum pressure and the positive pulse intensity integral decrease only slightly (pmax up to 12%, PII+ up to 18.8%) comparing 1 Hz and 25 Hz for one device, they drop sharply (pmax up to 68.4%, PII+ up to 90.2%) for the other device comparing 1 Hz to 21 Hz. The same effect was observed in the vibrometer measurements. The results show that with increasing pulse repetition rate the stability of the parameters varies between different devices. Hence, all sound field parameters should be compared before transferring settings from one device to another.

Funder

E.M.S. Electro Medical Systems S.A., Nyon, Switzerland

RWTH Aachen University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3