Studies on the mechanical and thermal stability of Calotropis gigantea fibre-reinforced bran nano particulates epoxy composite

Author:

Raja Thandavamoorthy,Devarajan Yuvarajan,Thanappan Subash

Abstract

AbstractIn recent trends, the usage of synthetic materials has been reduced by introducing natural fibres for lightweight applications. In this study, Madar (Calotropis gigantea) fibre is selected for the reinforcement phase (40%), and the epoxy polymer is blended with bran filler selected as a matrix material. To calculate hybrid composite mechanical characteristics, five composite laminates with different fibre/filler weight ratios were made. The results show that when the weight ratio of madar fibre increased, the superior mechanical properties were observed in the composite laminate sample (A), such as tensile strength (20.85 MPa), flexural strength (24.14 MPa), impact energy absorption (23 J) compared with an increasing the weight ratio of bran nanofiller to this composite material. At the same time, increasing bran nanofillers can improve thermal stability up to 445 °C of degrading temperature. To analyse the surface interaction between the madar fibres, bran nanofillers, and epoxy matrix by conducting the scanning electron microscope (SEM) analysis before subjecting to the mechanical test and also to identify the failure mode by conducting the SEM test after the laminates are broken during the mechanical tests of the hybrid composite.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3