Cross-calibration of two dual-energy X-ray absorptiometry devices for the measurement of body composition in young children

Author:

Lyons-Reid Jaz,Kenealy Timothy,Albert Benjamin B.,Ward Kate A.,Harvey Nicholas,Godfrey Keith M.,Chan Shiao-Yng,Cutfield Wayne S.

Abstract

AbstractThis study aimed to cross-calibrate body composition measures from the GE Lunar Prodigy and GE Lunar iDXA in a cohort of young children. 28 children (mean age 3.4 years) were measured on the iDXA followed by the Prodigy. Prodigy scans were subsequently reanalysed using enCORE v17 enhanced analysis (“Prodigy enhanced”). Body composition parameters were compared across three evaluation methods (Prodigy, Prodigy enhanced, iDXA), and adjustment equations were developed. There were differences in the three evaluation methods for all body composition parameters. Body fat percentage (%BF) from the iDXA was approximately 1.5-fold greater than the Prodigy, whereas bone mineral density (BMD) was approximately 20% lower. Reanalysis of Prodigy scans with enhanced software attenuated these differences (%BF: − 5.2% [95% CI − 3.5, − 6.8]; and BMD: 1.0% [95% CI 0.0, 1.9]), although significant differences remained for all parameters except total body less head (TBLH) total mass and TBLH BMD, and some regional estimates. There were large differences between the Prodigy and iDXA, with these differences related both to scan resolution and software. Reanalysis of Prodigy scans with enhanced analysis resulted in body composition values much closer to those obtained on the iDXA, although differences remained. As manufacturers update models and software, researchers and clinicians need to be aware of the impact this may have on the longitudinal assessment of body composition, as results may not be comparable across devices and software versions.

Funder

The University of Auckland, New Zealand

Medical Research Council

National Institute of Health Research, United Kingdom

National Institute for Health Research Southampton Biomedical Research Centre

NIHR Southampton 1000DaysPlus Global Nutrition Research Group, United Kingdom

Singapore National Medical Research Council, Singapore

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3