An insight into the estimation of drilling fluid density at HPHT condition using PSO-, ICA-, and GA-LSSVM strategies

Author:

Alizadeh S. M.,Alruyemi Issam,Daneshfar Reza,Mohammadi-Khanaposhtani Mohammad,Naseri Maryam

Abstract

AbstractThe present study evaluates the drilling fluid density of oil fields at enhanced temperatures and pressures. The main objective of this work is to introduce a set of modeling and experimental techniques for forecasting the drilling fluid density via various intelligent models. Three models were assessed, including PSO-LSSVM, ICA-LSSVM, and GA-LSSVM. The PSO-LSSVM technique outperformed the other models in light of the smallest deviation factor, reflecting the responses of the largest accuracy. The experimental and modeled regression diagrams of the coefficient of determination (R2) were plotted. In the GA-LSSVM approach, R2 was calculated to be 0.998, 0.996 and 0.996 for the training, testing and validation datasets, respectively. R2 was obtained to be 0.999, 0.999 and 0.998 for the training, testing and validation datasets, respectively, in the ICA-LSSVM approach. Finally, it was found to be 0.999, 0.999 and 0.999 for the training, testing and validation datasets in the PSO-LSSVM method, respectively. In addition, a sensitivity analysis was performed to explore the impacts of several variables. It was observed that the initial density had the largest impact on the drilling fluid density, yielding a 0.98 relevancy factor.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3