A universal variational quantum eigensolver for non-Hermitian systems

Author:

Zhao Huanfeng,Zhang Peng,Wei Tzu-Chieh

Abstract

AbstractMany quantum algorithms are developed to evaluate eigenvalues for Hermitian matrices. However, few practical approach exists for the eigenanalysis of non-Hermintian ones, such as arising from modern power systems. The main difficulty lies in the fact that, as the eigenvector matrix of a general matrix can be non-unitary, solving a general eigenvalue problem is inherently incompatible with existing unitary-gate-based quantum methods. To fill this gap, this paper introduces a Variational Quantum Universal Eigensolver (VQUE), which is deployable on noisy intermediate scale quantum computers. Our new contributions include: (1) The first universal variational quantum algorithm capable of evaluating the eigenvalues of non-Hermitian matrices—Inspired by Schur’s triangularization theory, VQUE unitarizes the eigenvalue problem to a procedure of searching unitary transformation matrices via quantum devices; (2) A Quantum Process Snapshot technique is devised to make VQUE maintain the potential quantum advantage inherited from the original variational quantum eigensolver—With additional $$O(log_{2}{N})$$ O ( l o g 2 N ) quantum gates, this method efficiently identifies whether a unitary operator is triangular with respect to a given basis; (3) Successful deployment and validation of VQUE on a real noisy quantum computer, which demonstrates the algorithm’s feasibility. We also undertake a comprehensive parametric study to validate VQUE’s scalability, generality, and performance in realistic applications.

Funder

National Science Foundation

U.S. Department of Energy

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference44 articles.

1. Kundur, P. S. & Malik, O. P. Power System Stability and Control (McGraw-Hill Education, 2022).

2. Zhang, P. Networked Microgrids (Cambridge University Press, 2021).

3. Khalil, H. K. Nonlinear systems third edition. Patience Hall 115 ( 2002).

4. Dhabi, A. Renewable Capacity Statistics 2023 (International Renewable Energy Agency, 2023).

5. Horn, R. A. & Johnson, C. R. Matrix analysis (Cambridge University Press, 2012).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Quantum Circuit Design for Quantum Portfolio Optimization Problem;2024 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC);2024-07-02

2. Hermitian-preserving ansatz and variational open quantum eigensolver;Physical Review A;2024-06-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3