A deep network embedded with rough fuzzy discretization for OCT fundus image segmentation

Author:

Chen Qiong,Zeng Lirong,Lin Cong

Abstract

AbstractThe noise and redundant information are the main reasons for the performance bottleneck of medical image segmentation algorithms based on the deep learning. To this end, we propose a deep network embedded with rough fuzzy discretization (RFDDN) for OCT fundus image segmentation. Firstly, we establish the information decision table of OCT fundus image segmentation, and regard each category of segmentation region as a fuzzy set. Then, we use the fuzzy c-means clustering to get the membership degrees of pixels to each segmentation region. According to membership functions and the equivalence relation generated by the brightness attribute, we design the individual fitness function based on the rough fuzzy set, and use a genetic algorithm to search for the best breakpoints to discretize the features of OCT fundus images. Finally, we take the feature discretization based on the rough fuzzy set as the pre-module of the deep neural network, and introduce the deep supervised attention mechanism to obtain the important multi-scale information. We compare RFDDN with U-Net, ReLayNet, CE-Net, MultiResUNet, and ISCLNet on the two groups of 3D retinal OCT data. RFDDN is superior to the other five methods on all evaluation indicators. The results obtained by ISCLNet are the second only inferior to those obtained by RFDDN. DSC, sensitivity, and specificity of RFDDN are evenly 3.3%, 2.6%, and 7.1% higher than those of ISCLNet, respectively. HD95 and ASD of RFDDN are evenly 6.6% and 19.7% lower than those of ISCLNet, respectively. The experimental results show that our method can effectively eliminate the noise and redundant information in Oct fundus images, and greatly improve the accuracy of OCT fundus image segmentation while taking into account the interpretability and computational efficiency.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3