Automatic segmentation tool for 3D digital rocks by deep learning

Author:

Phan Johan,Ruspini Leonardo C.,Lindseth Frank

Abstract

AbstractObtaining an accurate segmentation of images obtained by computed microtomography (micro-CT) techniques is a non-trivial process due to the wide range of noise types and artifacts present in these images. Current methodologies are often time-consuming, sensitive to noise and artifacts, and require skilled people to give accurate results. Motivated by the rapid advancement of deep learning-based segmentation techniques in recent years, we have developed a tool that aims to fully automate the segmentation process in one step, without the need for any extra image processing steps such as noise filtering or artifact removal. To get a general model, we train our network using a dataset made of high-quality three-dimensional micro-CT images from different scanners, rock types, and resolutions. In addition, we use a domain-specific augmented training pipeline with various types of noise, synthetic artifacts, and image transformation/distortion. For validation, we use a synthetic dataset to measure accuracy and analyze noise/artifact sensitivity. The results show a robust and accurate segmentation performance for the most common types of noises present in real micro-CT images. We also compared the segmentation of our method and five expert users, using commercial and open software packages on real rock images. We found that most of the current tools fail to reduce the impact of local and global noises and artifacts. We quantified the variation on human-assisted segmentation results in terms of physical properties and observed a large variation. In comparison, the new method is more robust to local noises and artifacts, outperforming the human segmentation and giving consistent results. Finally, we compared the porosity of our model segmented images with experimental porosity measured in the laboratory for ten different untrained samples, finding very encouraging results.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3