Experimental implementation of a neural network optical channel equalizer in restricted hardware using pruning and quantization

Author:

Ron Diego Argüello,Freire Pedro J.,Prilepsky Jaroslaw E.,Kamalian-Kopae Morteza,Napoli Antonio,Turitsyn Sergei K.

Abstract

AbstractThe deployment of artificial neural networks-based optical channel equalizers on edge-computing devices is critically important for the next generation of optical communication systems. However, this is still a highly challenging problem, mainly due to the computational complexity of the artificial neural networks (NNs) required for the efficient equalization of nonlinear optical channels with large dispersion-induced memory. To implement the NN-based optical channel equalizer in hardware, a substantial complexity reduction is needed, while we have to keep an acceptable performance level of the simplified NN model. In this work, we address the complexity reduction problem by applying pruning and quantization techniques to an NN-based optical channel equalizer. We use an exemplary NN architecture, the multi-layer perceptron (MLP), to mitigate the impairments for 30 GBd 1000 km transmission over a standard single-mode fiber, and demonstrate that it is feasible to reduce the equalizer’s memory by up to 87.12%, and its complexity by up to 78.34%, without noticeable performance degradation. In addition to this, we accurately define the computational complexity of a compressed NN-based equalizer in the digital signal processing (DSP) sense. Further, we examine the impact of using hardware with different CPU and GPU features on the power consumption and latency for the compressed equalizer. We also verify the developed technique experimentally, by implementing the reduced NN equalizer on two standard edge-computing hardware units: Raspberry Pi 4 and Nvidia Jetson Nano, which are used to process the data generated via simulating the signal’s propagation down the optical-fiber system.

Funder

POST-DIGITAL

TRANSNET

REAL-NET

Leverhulme Trust project

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3