Author:
Bowen Melissa M.,Fernandez Denise,Gordon Arnold L.,Huber Bruce,Castagno Pasquale,Falco Pierpaolo,Budillon Giorgio,Gunn Kathryn L.,Forcen-Vazquez Aitana
Abstract
AbstractAntarctic Bottom Water (AABW) stores heat and gases over decades to centuries after contact with the atmosphere during formation on the Antarctic shelf and subsequent flow into the global deep ocean. Dense water from the western Ross Sea, a primary source of AABW, shows changes in water properties and volume over the last few decades. Here we show, using multiple years of moored observations, that the density and speed of the outflow are consistent with a release from the Drygalski Trough controlled by the density in Terra Nova Bay (the “accelerator”) and the tidal mixing (the “brake”). We suggest tides create two peaks in density and flow each year at the equinoxes and could cause changes of ~ 30% in the flow and density over the 18.6-year lunar nodal tide. Based on our dynamic model, we find tides can explain much of the decadal variability in the outflow with longer-term changes likely driven by the density in Terra Nova Bay.
Funder
New Zealand Strategic Investment Fund: Antarctic Science Platform
New Zealand Deep South National Science Challenge
Italian National Program for Antarctic Research
Publisher
Springer Science and Business Media LLC
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献