Pulse and pulsating supercharging phenomena in a semi-enclosed pipe

Author:

Wang Fei,Li Heng

Abstract

AbstractConsidering the discontinuous square pulse wave and continuous sine pulsating wave, we report a distinctive supercharging phenomenon of fluid in a water-filled semi-enclosed pipe and reveal the supercharging regularity. We demonstrate that there can be significant supercharging phenomena at the pipe end-face if the water is periodically injected at the pipe inlet with certain frequency. Compared to the traditional pulsating injection method, the present injection strategy can remarkably enhance the peak pressure of the water at the end face of the pipe. We explained this phenomenon by numerical simulations based on the computational fluid dynamic method. It’s found that there is a quantitative relationship between the optimal pulse frequency, pipe length and wave speed. The proposed frequency model is suitable for the multi-waveform, such as sine wave, square wave and arcuate wave. The fluid pressure at the pipe end-face intermittently increases and the end-face peak pressure is largest when the inlet injection frequency equals to the optimal frequency.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3