Quantum transport of massless Dirac fermions through wormhole-shaped curved graphene in presence of constant axial magnetic flux

Author:

Naderi F.,Hasanirokh K.

Abstract

AbstractIn this work, we have studied the spin-dependent quantum transport of charged fermion on $$(2+1)$$ ( 2 + 1 ) -dimensional spacetime, whose spatial part is described by a wormhole-type geometry in the presence of constant axial magnetic flux. Choosing the solutions of the Dirac equation associated with real energy and momentum, we explored the spin-dependent transmission probabilities and giant magnetoresistance (GMR) through a single layer of wormhole graphene with an external magnetic field, using the transition matrix (T-Matrix) approach. The spin-up and spin-down components within the A and B sublattices of graphene in the matrix of $$4\times 1$$ 4 × 1 wave function are coupled to each other due to the wormhole structure and the magnetic field. We have found that transport properties strongly depend on the magnetic field, incident energy, and geometric parameters of the system. We observed that the transmission probability increases as the radius of the wormhole increases, and the length of the wormhole decreases. The higher energies lead to a decrease in the transmission probabilities of particles. Furthermore, we observed that the probability of the spin-flip effect is almost larger than that of the non-spin-flip effect, illustrating that electrons lose their spins during transmission. These findings highlight the complex and interesting behavior of wormhole graphene in the presence of external magnetic fields and suggest that these nano structures can have potential applications in electronic and spintronic devices.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rotational influence on fermions within negative curvature wormholes;The European Physical Journal Plus;2024-08-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3